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Ludwig Boltzmann’s ideas on irreversibility are as controversial today as they were at their
introduction a hundred years ago. In the article “Boltzmann’s Entropy and Time’s Arrow”
(September 1993, page 32), Joel Lebowitz, by giving a modern exposition of Boltzmann’s
ideas, tries to assure us that the controversy is unwarranted. Readers left unpersuaded
should know that they are not alone. Boltzmann’s ideas are indeed controversial, because
Boltzmann failed to palce them on a firm conceptual foundation. Today a firm foundation
can be provided—the key ideas are Claude Shannon’s statistical information [1] and Edwin
Jaynes’s principle of maximum entropy [2]—but Lebowitz’s update, instead of providing the
necessary clarification, recapitulates the same murky concepts in modern language.

Lebowitz addresses how time-asymmetric behavior of macroscopic variables arises from
time-symmetric microscopic equations. He partitions phase space into macrostates, coarse-
grained cells Mi (of phase-space volume |ΓMi

|) defined by the values of the macroscopic
variables of interest—for example, the numbers of particles within identical cubes that fill
configuration space. To each phase-space point, or microstate, in Mi he assigns the Boltz-
mann entropy SB(Mi) = k log |ΓMi

|. If the system is initially confined to a small phase-space
cell, then when the constraints are released, it will tend to wander into larger cells. Lebowitz
quantifies this behavior in terms of the Boltzmann entropy, which tends to increase along a
“typical” trajectory.

The problem here is not the story so much as the commentary; for someone outlining
an avowedly statistical theory, Lebowitz betrays an odd mistrust of probability concepts.
He stresses that he is dealing with the typical behavior of individual systems, not with
average behavior within an ensemble. But how can one characterize typical behavior with-
out reference to a probability distribution? Furthermore, he dismisses the Gibbs entropy
SG = −k

∫
dΓρ log ρ of a phase-space probability distribution ρ as irrelevant to nonequilib-

rium phenomena, partly because it remains constant under Hamiltonian evolution, but also
because it relies on probabilities. Yet what is the significance of the increase of the Boltz-
mann entropy when it has an interpretation as a physical quantity only in thermodynamic
equilibrium? Indeed, why attribute a Boltzmann entropy to each phase-space point when
the Boltzmann entropy is wholly a property of the coarse-graining?

Dealing with these questions entails using probabilities. Lebowitz implies that proba-
bilistic predictions apply only to physical ensembles. To the contrary, when probabilities are
sharply peaked, as they are for certain macroscopic variables, they make reliable predictions
for individual systems. Probabilities provide the only way to define typical behavior for
individual systems and to assess just how typical it is.

The phase-space probability distribution ρ(t) at time t follows from applying the system
dynamics to a uniform distribution on the initial cell. The statistics of the macroscopic
variables at time t, determined by the probabilities pi(t) =

∫
Mi
dΓ ρ(t) to be in cell Mi, are

unaffected if ρ(t) is replaced, within each cell Mi, by a uniform probability distribution con-
taining probability pi(t). This coarse-grained phase-space distribution can be characterized
uniquely as having the maximum Gibbs entropy given the probabilities pi(t), the maximum
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being S̄G = −k∑
i pi log pi + ∑

i piSB(Mi).
Lebowitz’s insistence on the primacy of Boltzmann entropy over Gibbs entropy is thus

stood on its head. The Gibbs entropy S̄G of the coarse-grained distribution generally in-
creases. Moreover, the increase has a compelling interpretation: Since SG/k is Shannon’s
statistical information, the difference between S̄G and the initial Gibbs entropy is the amount
of information discarded when one retains only the statistics of the macroscopic variables.
The average Boltzmann entropy does contribute to S̄G, but this appearance of the Boltz-
mann entropies has nothing to do with entropies of individual phase-space points; rather,
it is a direct expression of having discarded all information about the details of ρ(t) within
the coarse-grained cells.

As Jaynes has emphasized [2], firm conceptual foundations are required for progress in
physics. The shaky foundations provided by Boltzmann and Lebowitz obscure both what has
been accomplished and what remains to be done. Boltzmann’s ideas can indeed by used to
derive time-asymmetric equations for macroscopic variables, once they are supported within
the solid framework of Gibbs, Shannon and Jaynes; the Gibbs entropy S̄G explains the time
asymmetry as a consequence of discarding microscopic information that is unnecessary for
predicting the behavior of the macroscopic variables. Yet this explanation, like all good ones,
immediately raises other questions: Why coarse-grain? Why discard information? These
questions, the true puzzles of irreversibility, provide the arena for further work [3].
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