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Abstract 

Landauer’s principle that the world’s entropy in- 
creases b y  a t  least k B h 2  upon a one-bit erasure in 
a memory coupled to an infinite heat bath is general- 
ized to the nominally different case of dumping in- 
formation past a black hole’s event horizon. Specifi- 
cally this idea  is used to provide a lower bound on 
the black-hole entropy to horizon area ratio using on- 
l y  a modicum of classical general relativity and rela- 
tivastic quantum mechanics; quantum field theoretic 
methods are not required. The dumping of free 1-D 
scalar-particle wave packets leads to an estimate of 
.181 for  the lower bound of the said ratio. This 
compares well to the established value of exactly 114 
for  the ratio itself and contrasts with Bekenstein’s 
original %formation theoretic” estimate of .028. 

I. Introduction 

Landauer’s principle [1,2] is the thermodynamic 
accounting rule that requires a minimum free energy 
expenditure of k B T l n 2  in the erasure of one bit of 
information by an engine coupled to an infinite heat 
bath at temperature T.  Use of this principle has re- 
cently proven crucial to the correct analysis of the 
limitations of Maxwellian demons [3] and, moreover! 
led to Zurek’s [4,5] proposal that physical entropy S 
consists not only of the standard statistical contribu- 
tion H = - I C ,  p i  In p i  but also an algorithmic in- 
formation theoretic term K (  data) .  This term, Chai- 
tin’s algorithmic entropy/complexity [6], represents 
the length of the shortest self-delimiting code-word 
(with respect to some given universal Turing ma- 
chine) for specifying a demon’s data on the system’s 
exact dynamic state. In part this proposal is allowed 
by means of the thermodynamic relation F = E - 
T S ;  for from this one can say that Landauer’s prin- 
ciple entails that a one-bit erasure is necessarily ac- 
companied b y  a minimum one-bit (i.e. kB1n2) in- 
crease in the world’s entropy. This ingredient lead- 
ing to Zurek’s proposal may be termed the entropic 

formulation of Landauer’s principle. In this report, 
Zurek’s proposal is taken to be incontestable whenev- 
er such an entropic Landauer principle is valid. 

Caution, however, is clearly required in the usage 
of this entropic formulation. One must not forget 
the limited physical situation in which it receives its 
justification -engines coupled to environments with 
specified temperatures T, i.e. infinite heat baths. 
One could, for instance, wonder how well this ver- 
sion of the principle fairs when the erasure comes 
about not by means of a coupling to an infinite heat 
bath but rather by some other mechanism, say by 
the coupling to a larger but finite environment with 
fixed energy E - the microcanonical ensemble? Or 
even whether there are at all any other means than 
the one already considered of true information era- 
sure? Such questions must definitely be fleshed out 
in detail before the entropic Landauer principle can 
be attributed a universal validity. It is this train of 
thought that leads directly to black-hole physics. 

At least one other independent mechanism for in- 
formation erasure is apparently supplied by the “no 
hair” theorems of black hole physics [7]. In classical 
general relativity a black hole in equilibrium is char- 
acterized by nothing more than three parameters: 
mass, angular momentum, and electric charge. Con- 
sequently in the event that a physical information- 
bearing signal is captured by a black hole, most ev- 
erything about that signal will be “erased” from the 
world. To take a specific instance, consider the 
various possible signals that may be sent by means 
of a beam of a given number of identical spins whose 
net angular momentum totals up to zero. The pat- 
tern of spin-up and spin-down slots in the signal 
might be used to convey a binary signal. In the ap- 
proximation that the spins are noninteracting, one 
can easily imagine injection schemes in which each 
distinct signal leads nevertheless to the same identi- 
cally parametered black hole. Hence the claim of 
erasure. Similar scenarios can be substituted for 
messages written in books of a given mass, messages 
encoded in the delay time between a fixed number of 
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identical particle’s arrivals at  some receiver, or any 
of a countless number of other exaimples. Needless 
to say though, it is not as if everything else in the 
world excepting the disappearance (of the signal re- 
mains constant during these captuire processes; the 
black hole inevitably emerges with a new set of pa- 
rameters and consequently a new event-horizon area. 
In particular, because of Hawking’s area theorem [8], 
in realistic situations the event horizon area will al- 
ways increase in a signal erasure. 

These facts hint that the natural analog to an 
entropic Landauer principle in black-hole physics is 
perhaps simply a trade-off between information loss 
and area growth. Indeed it is already well known 
that black holes do actually have an associated en- 
tropy S with all the properties that one would ex- 
pect of a thermodynamic entropy. IMoreover this en- 
tropy is directly proportional to the event horizon 
area, i.e. S = ?A (setting G = c = tc. = LB = 1). This 
was first conjectured by Bekenstein in 1972, motiva- 
ting it for the most part as a means of salvaging the 
Second Law of Thermodynamics in the world exter- 
nal to the horizon. Of particular relevance to the 
present purpose, it should be noted that Bekenstein’s 
method for estimating the value of q [9], although 
slightly off base, involved certain “information theo- 
retic’’ considerations that we shall later build upon. 
Subsequent workers have by various means (quan- 
tum field theory on curved backgrounds [lo], quasi- 
statically building up a black hole quanta by quanta 
carefully taking into account quantum field theoretic 
acceleration radiation [ll], path int’egral methods for 
thermodynamics [12], etc . )  supplied the exact value 
of q = 1/4 for this relation. 

The mission of this report should now be clear: 
to answer the question of how well the entropic Lan- 
dauer principle fares in this situation so disparate 
from its original justification by explicitly checking 
how well it meshes with the established value for 17. 
Section I1 below reviews the work of Bekenstein, 
shows how this hints at the signaling scheme most 
convenient for the present considerations, and lays 
out the plan of the calculation. Section I11 intro- 
duces the appropriate concepts from relativistic 
quantum mechanics and carries through the harder 
part of the work. Section IV declares the final esti- 
mate of q 2 .181 and closes with a small discussion. 

II. The Implementation of Landauer’s Principle 

The precedent for using “information theoretic” 
considerations in estimating q wag already set long 
ago by Bekenstein himself [9]. Briefly, his reasoning 
runs as follows. Consider a simple classical particle 

of rest mass m and proper radius r allowed to free 
fall past a black hole’s event horizon. Depending 
upon the exact way the particle encounters the hori- 
zon, one can expect the horizon area to grow by var- 
ious distinct amounts. It turns out, however, that 
there is one general requirement for this growth: as 
long as the horizon area is already sufficiently large 
with respect to r2, its growth can never be less than 
8nmr-independent of the exact nature of the hole 
[9]. Thus in this process, AA 2 8nmr. By conjec- 
ture, though, A S  = q AA. So if there were some 
principle to fix a minimum AS, one could start to 
imagine a means for bounding q. At this point, 
Bekenstein takes the following position. Upon the 
particle’s crossing the horizon, any amount of infor- 
mation concerning that particle (composition, color, 
etc . )  may be lost; the amount will just depend on 
how much was known beforehand. At the very least, 
though, the question of the particle’s existence can 
no longer be answered by an outside observer. This 
he justifies by pointing out that under no circum- 
stances can communication take place across the ho- 
rizon. Thus, associated with the hypothesis of exis- 
tence, one must now use the probabilities pyes = 
pno = 3: whereas before the particle’s capture one 
necessarily had to use pYFs = 1 and pno = 0. In 
other words, this process gives a statistical informa- 
tion loss (in the Shannon sense) of at least -3lng - 
LlnL = ln2, i . e .  one bit. Equating this statistical 
2 2  information loss 6 la Jaynes [13] with the AS for a 
minimal area increase, the bound 77 2 (ln2)/8?rmr 
follows. The direction of the inequality comes from 
the fact that the 87rmr growth can actually be at- 
tained with the correct orbit while the possibility of 
the attainment of the ln2 is clearly more debatable. 

Now, however, it should be apparent that eventu- 
ally quantum theory will have to be invoked. Clas- 
sical theory cannot complete the reasoning: by mak- 
ing the particle’s mass or radius arbitrarily small, 
one can make the lower bound on q arbitrarily large. 
First consider the case in which the particle’s mass 
m is fixed at the outset, Here relativistic quantum 
theory denies the possibility of 77-00 by demanding 
that particles be represented by wave packets, and 
moreover, that wave packets of “width” smaller than 
the particle’s Compton wavelength l /m  be built not 
only of positive energy components but also negative 
ones, i .e .  antiparticles. (For simplicity it is assumed 
that the particle’s gravitational radius 2m is smaller 
than its Compton wavelength.) So to insure that a 
packet does indeed contain one and only one par- 
ticle, and thus contribute only the minimal In 2 to 
the “existence” information loss, its width can be no 
smaller than a Compton wavelength. Alternatively, 
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one could consider the case that r is fixed at  the out- 
set and take the limit that m+O. But here again 
the same problem appears; r becomes smaller than 
l /m.  Therefore, Bekenstein makes the claim that at 
minimum AA m 87rm ( l /m) = 87r so that conse- 
quently q 2 ,028. 

This original scheme of Bekenstein’s is reviewed in 
such detail because, although two of its points must 
be severely criticized (with hindsight of course), it 
does after all provide the backbone for the sought af- 
ter implementation of Landauer’s principle. So, on 
to the first criticism; the second criticism is saved for 
Section 111. 

First and foremost one must ask just how sound 
the justification really is for the one-bit information- 
loss minimum. What is it that singles out the ques- 
tion of existence as more infallibly applicable than 
any of a number of others that are just as clearly 
suggested by the problem? For instance: questions 
of existence aside, does the particle still possess a po- 
sition in spacetime after crossing the horizon? Does 
it still possess a four-momentum? Just as with the 
question of existence, these too cannot be answered 
by an external observer. Without a further philo- 
sophical criterion for tying all these (and perhaps 
other) questions together, one might argue that the 
true minimum bit loss is much greater than that 
suggested by Bekenstein. The point to be made here 
is that perhaps Bekenstein’s argument is not as 
physical as it should be and that perhaps the search 
for the “real” information loss is not quite the cor- 
rect route to take in fixing a minimum AS. 

This is where Landauer’s principle enters the 
scene. Consider again the same scenario of a particle 
free falling into a sufficiently large black hole. (Here 
we analyze this situation from the perspective of the 
black hole; elsewhere [14] we develop it from an out- 
sider’s point of view.) By the local gravitational 
field laws, the horizon area must increase by at least 
87rmr in the absorption of the particle. Alternative- 
ly however, by the entropic version of Landauer’s 
principle, the black-hole entropy must also adjust ac- 
cordingly; for the black hole, again given only its lo- 
cal interaction with the particle, cannot know that 
the particle was not part of some larger information 
bearing signal-for instance, a signal representing the 
results of a Maxwellian demon’s measurements on an 
N-box Szilard engine [2-51. Thus one might as well 
act as if the given particle is indeed a component in 
some larger signal. Without loss of generality for 
the present argument, it is most convenient to as- 
sume this hypothetical signal to be of a “time delay 
between particle” type: conceptual boxes occupied 
by particles might represent the 1’s in a binary 

string, while conceptual boxes occupied by void 
might represent the 0’s. For example: 

0 .  0 I I I 0 I Io ]4+1101000101 

As can be seen by the varied positions of the parti- 
cles in the boxes of this illustration, there is nothing 
in this coding scheme that requires the conceptual- 
box size to be determined by the actual particle size. 
This scheme allows for the wisest use of the frame- 
work developed earlier since the particles themselves, 
i.e. the only signal components capable of increasing 
the black-hole area, actually stand for bits. 

Now a most useful question arises. Agreeing that 
the black-hole entropy will adjust when a particle is 
absorbed, how much must it adjust? To this end 
one must recognize that if the particle is part of 
some larger signal, then by necessity it represents in 
this scheme a digit in a binary string x, say, of some 
fixed (although perhaps unspecified) length N, for 
instance. This says nothing more than that before 
one can calculate an entropy, one must pick a defi- 
nite system. Hence one can invoke a well known 
theorem of algorithmic information theory to write 
at least formally [6] : 

c1 5 K ( x )  5 N + K ( N ) + c z ,  

where moreover (1) 
K ( N )  5 210gN+c3.  

(Here and elsewhere log is taken to mean the base 2 
logarithm and all c i ,  i = 1,2,. . . , are positive integer 
constants independent of N and x.) This makes 
clear that, by Zurek’s proposal, if the black hole 
were to absorb the whole signal x, its entropy must 
increase by anywhere from c1 to N + 2 1 0 g N + c 4  
bits, depending on the true complexity of x. Since 
this situation is completely specified there is no sta- 
tistical contribution H to Zurek’s physical entropy 
for the signal, i .e.  when discussing the signal x, the 
point of view of a completely informed Maxwell de- 
mon is used. If the black hole were to ultimately ab- 
sorb only part of the signal, then its entropy need 
only increase to an appropriately lesser extent. This 
leads to the crucial point. If the black hole cannot 
know whether the given particle is part of some larg- 
er signal, then it certainly cannot know in advance 
the algorithmic complexity of the whole signal or 
even whether the whole signal will be eventually ab- 
sorbed. Therefore, to cover all bases and ultimately 
insure Landauer’s principle, the black-hole entropy 
had better adjust in a way appropriate for a maxi- 
mum information content signal of some unsoecified 
but fixed length N .  
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With the last point made, all that is left to com- 
plete the present line of reasoning is a clarification of 
the phrase “adjust in a way appropriate for a maxi- 
mum information content signal.” Then the method 
for estimating q based purely on Landauer’s prin- 
ciple will be at hand. Here again a standard theo- 
rem of algorithmic information theory will provide 
the needed tool. For it turns out that maximally 
complex strings have an essentially fixed distribution 
of 0’s and 1’s. Let S, denote the number of 1’s in 2. 

Then there exists a c5 and c6 such that 

K ( X )  > N + c5 implies IS, - N I 5 c6m. (2) 

This theorem, first shown by Martin-Liif [15], is one 
among many reasons strings of maximal complexity 
are called “random”; random strings have an ap- 
proximately equal number of 0’s and 1’s. Hence, 
assuming that the particles in the hypothetical signal 
are noninteracting, the phrase “adjust in a way ap- 
propriate ...” can only mean: 

AA 4 [(N/2) + c 7 m ] 8 n m r  

AS --$ [N+210gN+c4]ln2. 

Although it is of no real importance, the plus sign in 
the first of these is chosen so that the bound on q 
cannot be overestimated. Since there is no way of 
fixing the constants in these prescriptions, one need 
merely take the limit of large N for the final esti- 
mate: 

while (3) 

In 2 q 2 lim - AS - - -- 
N + ~  AA 4nmr‘ (4) 

That is to say, each particle absorbed by the black 
hole must contribute at  least two bits of entropy. 

A few comments are still in order for the reason- 
ing behind the inequality in (4). First, as in the case 
with Bekenstein’s estimate, there is nothing that re- 
quires AS to be as small as argued here; Landauer’s 
principle can also clearly be salvaged by a more “ir- 
reversible” reaction. Second though, and of perhaps 
more interest, is the possibility that 8nmr may not 
be the absolute minimum area growth for the era- 
sure of a bit. Instead of allowing the signal to free 
fall past the event horizon, one might imagine lower- 
ing it down with a rope, say, and so effectively re- 
ducing its mass by extracting work from the process. 
Bekenstein [8] has argued that ultimately before the 
particle can be absorbed it must be released from the 
rope and hence be in free fall; this would force the 
8nmr lower bound to hold always. Whether this is 
a valid point is not clear, especially since in the end 

the quantum mechanical nature of matter must be 
taken into account. One thing, however, is for sure. 
If the signal is lowered down with a rope, the con- 
tainer housing the signal will be accelerated in the 
black-hole spacetime and so will feel a quantum field 
theoretic acceleration radiation [16] whose buoyancy- 
giving pressure would have to be taken into account. 
At this point the game of estimating 7 from simple 
principles (such as Landauer’s) would be lost, not 
least of all since q itself can be extracted from the 
radiation calculation [11,16]. 

Notice that so far the only thing that distinguish- 
es estimate (4) from Bekenstein’s original is a factor 
of two. The remainder of the discrepancy is found in 
the second criticism of that work. 

III. The Quantum Analog to AA 2 8rmt 

Bekenstein argues that the product of a particle’s 
mass and radius, mr, can be roughly no smaller than 
unity because semiclassically r cannot be smaller 
than l / m  without “pair production.” But how well- 
founded is this argument really? Answering the 
question of how the l / m  criterion arises rigorously 
leads to the next step in the estimate of q. 

Ultimately this phenomenon comes from the fact 
that in a (special) relativistic quantum theory the in- 
ner product must be Lorentz invariant. This can be 
seen as follows. Consider the inner product in mo- 
mentum space for positive energy solutions to the 
Klein-Gordon equation describing neiitral mass-m 
spin-zero particles [17] : 

The extra factor of ( p 2  + m2)- ‘ I2  accompanying 
the standard d 3 p  in this integral’s measure allows 
this inner product to be invariant under boosts. 
Now in nonrelativistic quantum mechanics the mo- 
mentum and position operators (Fj and Zj, j = 1,2, 
3) are represented in j-j-space by 

F j = p j  and x . = t - .  . a  
8 P ;  

The important thing to note here, though, is that 
with respect to the inner product (5), the operator Zj  
is not hermitian. In other words, Zj is not an ob- 
servable in the relativistic theory. The correct coun- 
terpart to Zj in the relativistic theory is the Newton- 
Wigner relativistic position operator c j  [18] given in 
$space by 

(7) 
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Not only is this operator hermitian with respect to 
(5), but it is also uniquely justified [18] in the sense 
that its eigenfunctions satisfy a reasonable criterion 
of being “localized.” Moreover, as one would hope, 

[Fi, Fk]= 0 and [Fi, & ]  = i S j k .  (8) 

Finally Newton and Wigner point out that expres- 
sions (5 ) ,  (7), and ( 8 )  still hold even in the case that 
m = 0. 

This much formalism introduced, the l / m  criteri- 
on now follows quite easily. One need only verify 
that up to normalization and phase the eigenfunc- 
tion of 4 with eigenvalue y in its &space representa- 
tion is 

This is given in its $-space representation by 

$(z) = (const) / J & 4 ( P ) e - + =  
(10) 

= ( m / r ) 5 / 4  ~ 6 ; k  (imr) , 

where r = I z - y I and Hi;{ is the order-5/4 Han- 
kel function of the first kind. Clearly this eigenfunc- 
tion is not the Dirac delta S(z - y) that one is used 
to from nonrelativistic quantum mechanics; it only 
blows up as r - 5 / 2  when r+O and falls off as e - mr 

when r+m. Because of the exponential decay with 
large r,  one may associate a characteristic width of 
l / m  with $(z). This last point gives rise to the tak- 
ing of l / m  as the approximate minimum wave pac- 
ket “width.” 

Now the points of contention with the original 
analysis can be faced; these are twofold. First and 
perhaps most basic, why should the characteristic 
width of the &pace representat ion of an eigenket 

I Q) have anything to do with a quantum mechani- 
cal analog to the requirement AA 2 Samr? The o p  
erator 2 is not even an observable in the relativistic 
quantum theory that gave rise to these consider- 
ations; so too it must be the case with this “width.” 
Furthermore, even with that point aside for the mo- 
ment, one is still left with the following question. If 
a semiclassical analysis is used for the classical r ,  
then should not that also be the case for the classical 
m (i.e. not the m appearing in the quantum theory 
above)? The correct analog to a “rest mass” for a 
wave packet would appear io  be something like ( 2 )  
the expectation value of E the relativistic energy 
operator or even possibly the root mean square. 
This idea, though, leads to a definite problem here. 

Recall that in +pace 2 is given by 

With this one clearly has for the minimum width 
packet (9) : 

In other words, ( 2 )  is simply not defined for this 
packet. Therefore within the present context these 
two ideas-seemingly required for consistency of 
method-cannot be of much use. 

The points made in the last paragraph taken to- 
gether lead to the following conjecture. Since the re- 
quirement AA 2 87rmr ultimately arises from a clas- 
sical equation of motion, one can invoke the corre- 
spondence principle [19] to assert that a more accu- 
rate quantum analog would be 

AA 2 87r m i n ( ( S ) ( Q ) )  ( 1 3 )  

where the min stands for taking the minimum over 
all possible wave packets 4(p )  subject only to the 
normalization condition 

A 2  0-2 and C2 = q1 + q 2  + ?:. 
Equation ( 1 3 )  may be taken as the starting point 

for returning to the considerations concerning Lan- 
dauer’s principle. Before starting, though, one can 
go one step further. Since no particular mass m in 
this relativistic quantum theory (not even m = 0) is 
singled out as distinct from any other, one might as 
well take the limit m+O in ( 1 3 )  at the outset. This 
stands the chance of simplifying things greatly. The 
remainder of this section is devoted tz  explicitly cal- 
culating a numerical value for min (( E ) ( Q)) for one- 
dimensional wave packets with m = 0. 

For simplicity in the calculation to come, note 
that (I?) and ( Q )  may be written in a formal repre- 
sentation free way w ( 4  13 14) and ( 4  I F  I $), 
respectively. Similarly the normalization condition 
(12) can be written as ( 4  I 4 )  = 1. Now in order for 
(E )  ( c )  to be a minimum it must at  least be sta- 
tionary with respect to variations in ( 4  I . Here it is 
assumed that variations of ( 4  I are independent of 
14). Introducing a Lagrange multiplier A’ for the 

constraint (14) and performing the variation, one ob- 
tains the eigenvalue equation 

90 



Acting back on this equation with ( 4  I ,  one trivially 
finds that 

Therefore, finding the minimum eigenvalue of (15) is 
enough to solve the problem at hand. 

Note that in one dimension with m set to zero the 
analogues to E and $ are I $l I and I Cl I ,  respec- 
tively. Using this and the fact that the computation 
of the minimum A' ca; be simplified even further 
with the assumption ( E )  = (F), one obtains the ei- 
genvalue problem 

The ultimate answer to the mr-analogue problem 
will then be given by Akin. 

The only real difficulty now is in interpreting the 
operators I & I and I Fl I . How does one take the 
absolute value of a differential operator? The lack of 
an answer to this question preempts any possibility 
of solving (17) directly. This problem may however 
be sidestepped if one is willing to use approximation 
techniques. In particular, first consider the eigenval- 
ue problem 

Because the commutation relations (8) are satisfied 
by Fl and gl, this is just a generalized harmonic 
oscillator problem with eigenvalues p = ( n  + 3) , n = 
0, 1,2,. . . [19]. Of course one really should be careful 
to check that all this still holds with respect to the 
relativistic inner product (5), but that task is readi- 
ly tractable. Writing the solutions to (18) as I n ) ,  it 
is not difficult to verify that 

are their momentum and ql-space representations re- 
spectively. With these in hand the means for getting 
around the problem mentioned at the beginning of 
the paragraph is immediate. Expand the trial solu- 
tions to (17) in terms of these harmonic oscillator 
eigenstates and use the linear variational method 
[19] to estimate A. The Variational method has the 
advantage that it only makes use of the matrix ele- 
ments 

(.13(191l + IF1 I ) l 4  = 

fbl 19111 I m )  + :<.I IF11 14. 
If each of these terms is evaluated in the appropriate 
representation, no problem in interpreting the I I 
will arise. Thus this is clearly the way to tackle the 
problem. 

Calling the matrix elements to the operator in 
(17) H,, , n, m = 0, 1, . . ., N, the linear variational 
method dictates that Amin be approximated by its 
lowest eigenvalue. This has been calculated with the 
help of the eigenvalue package in MathematicaTM for 
N up to 16. (Actually with a little finesse one can 
show that the N = 16 problem reduces to the evalu- 
ation of the eigenvalues of the 5 x 5 matrix whose el- 
ements are produced from I n ) for n = 0,4,8,12,16.) 
In this approximation Amin is found to be given by 
3523. 

IV. Conclusion 

The results of Sections I1 and I11 taken together 
give the final numerical estimate for the black-hole 
entropy to area ratio as 

ln2  % .181. 
4n ( .5523)2 v 2  

The ratio between the established value for q of 1/4 
and this lower bound is 1.38. This contrasts with 
8.93 for the same ratio only using Bekenstein's origi- 
nal "information theoretic" bound. 

This result argues well that the entropic formula- 
tion of Landauer's principle is valid outside its first 
arena of justification even though its general validity 
is still possibly far from confirmed. Moreover it 
demonstrates that the principle may be of some pre- 
dictive efficacy. For if 3 had not been known before- 
hand, one would not have been too far off the mark 
with this general and indeed simple argument. Fi- 
nally, viewing Landauer's principle as just what it is 
-a thermodynamic accounting rule -one is led back 
(but with perhaps new insight) to the magical ques- 
tion of how it is that spacetime structure knows the 
Second Law of Thermodynamics. Black holes can 
erase information in a detailed sense. 
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